

 Advent of Code Utils

 v5.0.0

 Table of contents

 	Advent of Code Utils

 	Changelog

 	Cheatsheet

 	

 	Modules

 	AOC

 	AOC.Case

 	AOC.IEx

 	Mix Tasks

 	mix aoc

 	mix aoc.gen

 	mix aoc.get

Advent of Code Utils

[image: hex.pm]
[image: hexdocs.pm]
[image: hex.pm]
Input fetching and boilerplate generation for Advent of Code.
The goal of this project is to eliminate most of the manual labor involved with
working on the yearly Advent of Code challenges.
As a sample, this is the workflow you'd use when working on the challenge of the
first of December 2020:
$ mix aoc
* Creating: lib/2020/1.ex
* Creating: input/2020_1.txt
* Creating: input/2020_1_example_0.txt
Today's challenge can be found at: https://adventofcode.com/2020/day/1

Afterwards, lib/2020/1.ex will look as follows:
import AOC

aoc 2020, 1 do
 def p1(input) do
 input
 end

 def p2(input) do
 input
 end
end
While solving your challenge, you can use the AOC.IEx.p1e/1 and
AOC.IEx.p2e/1 helpers in iex to test your solution so far with the example
input(s). Once ready, you can use AOC.IEx.p1i/1 and AOC.IEx.p2i/1 to run
your solution on your puzzle input.
The project also optionally supports automatically recompiling your mix project
when using the aforementioned helpers, timing your solutions, and boilerplate
generation for unit testing your solution modules. It also supports working on
puzzles from previous days or years. Check out the
docs or the
cheatsheet for more
information.

 Setup & Use

	Add advent_of_code_utils to your list of dependencies in mix.exs:
def deps do
 [
 {:advent_of_code_utils, "~> 5.0"}
]
end

	Configure your Advent of Code project in config/config.exs:
	Store your session cookie. You can find this by inspecting your cookies
after logging in to the advent of code website.
config :advent_of_code_utils, session: "<your cookie>"

	(Optional) Set auto_compile? to true if you want the various AOC.IEx.p* helpers
to recompile your project:
config :advent_of_code_utils, auto_compile?: true

	(Optional) Set time_calls? to true if you want the various AOC.IEx.p* helpers
to show the runtime of calling a solution.
config :advent_of_code_utils, time_calls?: true

	(Optional) Set gen_tests? to true if you want mix aoc.gen to
generate unit test code.
config :advent_of_code_utils, gen_tests?: true

	(Optional) Configure iex to display charlists as lists. This will prevent lists like
[99, 97, 116] to show up as 'cat':
config :iex, inspect: [charlists: :as_lists]

	If you follow these steps, your config/config.exs should look as follows:
import Config

config :advent_of_code_utils,
 auto_compile?: true,
 time_calls?: true,
 gen_tests?: true,
 session: "<your session cookie>"

config :iex,
 inspect: [charlists: :as_lists]

	(Optional) Add import AOC.IEx to your
.iex.exs file.
This allows you to use the utilities defined in AOC.IEx without
specifying the module name.

	(Optional) Add input/ to your .gitignore file if you use git.

Now that you are set up, you can use mix aoc to work on today's challenge.
The day and year of a challenge can be passed in various ways, so this project
can still be used when working on older challenges.
If you only want to use this application to fetch the input of a challenge
without generating any code, you can skip most of the optional steps above and
use mix aoc.get instead of mix aoc.

 Example Input

Besides fetching input, mix aoc.get and mix aoc will also fetch example
input for the given day. This is done by reading each code example on the
challenge webpage and storing each with a progressive number (starting from 0).
Since this method is not 100% reliable, you may you wish to disable this
behaviour. This can be done by passing the --no-example flag to mix aoc or
mix aoc.get or by setting fetch_example? to false in your config.exs
file.

 Time Zones

By default, this project uses your system time (as determined by
NaiveDateTime.local_now/0), to determine the current "day". Said otherwise,
if your computer says it is currently the 8th of December, mix aoc.get,
AOC.IEx.p1/2, and other functions which reason about time will assume it is
the 8th day of December. This can be problematic if you live in a time zone
which does not align well with the publication time of the AOC puzzles
(midnight US Eastern Standard Time).
This problem can be solved by setting the time_zone option of
advent_of_code_utils. When this option is set to :aoc, the project will
determine the current day based on EST, the time zone of the advent of code
servers. When it is said to :local (the default), your system time will be
used. Alternatively, a valid time zone string can be supplied, in which case
the project will determine the current day based on the provided time zone.
Use the aoc timezone instead of local time
config :advent_of_code_utils, time_zone: :aoc

 Issues

This project grew from a collection of utilities I wrote for myself when working
on advent of code.
I polished these utilities, but it is possible some bugs are still present.
If you run into any issue, feel free to create an issue on
GitHub.

 AoC Automation Guidelines

This tool follows the automation guidelines
on the /r/adventofcode community wiki. The following information is intended to
specify how we follow these guidelines:
	All code that communicates with the AoC servers is located in
lib/mix/tasks/aoc.get.ex.
	This tool only communicates with the AoC servers at the request of the user
(i.e. when they use mix aoc.get or mix aoc).
	Fetched inputs are stored locally and are never retrieved again unless the
user deletes the retrieved file manually (do_if_file_does_not_exist/2).
	The User-Agent header is set in fetch/2 and contains my personal contact
information and a reference to this repository.

Changelog

 5.0.0

 Overview

This version adds support for running solutions against multiple example inputs
in both iex and in test modules. Since this requires changing the naming scheme
of example files, users who wrote tests that rely on example input must run
mix aoc.get to fetch the examples for each day that uses example input in
tests.

 Detailed Changelog

	Make mix aoc.get fetch and store each example input, not just the first
(this is useful when several example are available or when part 2 supplies
additional examples)
	Update example_path/1 and example_string/1 to accept an :n option to
retrieve the n-th example (0-based).
	Add AOC.IEx.list_examples/1 to show the available examples.
	Update AOC.Case so that example_path/1 and example_string/1 optionally
accept the index of the example to use.
	Remove warning on freshly generated aoc code about unused input.

 4.0.1

	Make mix aoc.gen use example_string() instead of example_input(), which
doesn't exist.

 4.0.0

 Overview

Dropping support for helper functions in solution modules
This update makes the "puzzle input" method introduced in 3.0.0 the only way
to write solution modules. The old, "helper function" method is no longer
supported.
The helper function method worked as follows:
aoc year, day do
 def p1, do: input_string() |> # Solve puzzle
end
The puzzle input method works as follows:
aoc year, day do
 def p1(input), do: input |> # solve puzzle
end
Input is provided through the use of the helpers in AOC.IEx.
The input method is preferred as it makes it easier to test your solution using
different inputs without the need to modify any code. It also makes it
significantly easier to write tests for your solution module.
Users who wish to keep using the helper method are advised to stick to version
3 of Advent of Code Utils.
aoc_test/4
This update adds optional support for generating unit test modules for your
solution modules. You can now write:
aoc_test year, day do
end
Which will create an ExUnit.Case which tests your solution module. The
generated case will automatically call the doctests of your solution module.
mix aoc.gen can now also generate this test code and add doctests to your
solution module.

 Detailed Changelog

	Introduce AOC.aoc_test/4, AOC.Case.
	Update mix aoc.gen to generate unit test files
	Remove example_path/1, input_path/1, example_string/1,
input_string/1, example_stream/1, input_stream/1 from AOC module.
	Remove example_stream/1, input_stream/1 from AOC.IEx.
	Rename fetch_example configuration to fetch_example? for consistency.

 3.1.3

	Optionally show the elapsed time when calling a p1, p2, p1i, p1e,
p2i and p2e. This is done when the time_calls? configuration option is
set to true.

 3.1.2

	AOC.IEx.mod/1 now calls Code.ensure_loaded!/1 to ensure the target module
is loaded. This is done to prevent issues where p1e and p1i complain that
the target module does not exist.

 3.1.1

	input_stream, input_string, example_stream and example_string now
only trim trailing newlines, not significant whitespace.

 3.1.0

	Timezone support: the project now accepts a time_zone configuration setting
which can be used to specify the time zone used by the input fetcher and iex
helpers. This can be set to a time zone string, to :aoc or to :local (the
default). :local uses the system time, as before, while :aoc uses the
advent of code time zone (i.e. EST).

 3.0.0

	AOC.IEx has been reworked.	All functions accept an opts keyword list used to specify year or day
when needed.
	p1 and p2 now accept puzzle input as an argument, making it easier to
switch between different inputs or examples.
	Introduce p1e, p1i, p2e and p2i to facilitate calling p1 or p2
with example or puzzle input.
	Introduce wrapper functions example_path/1, input_path/1,
example_string/1, input_string/1, example_stream/1 and
input_stream/1 to facilitate experimentation inside iex.

	Update AOC documentation to reflect to new workflow.
	Update mix aoc.gen to generate a template more suited to new workflow.

 2.0.2

	Pass user agent when using mix aoc.get

 2.0.1

	Update ex_doc, add typespecs to public functions.

 2.0.0

	input_string and example_string now both call String.trim_trailing/1 on
the returned string.

 1.1.0

	Download example input when using mix aoc.get.
	Add example_* functions to AOC module.

 1.0.1

	Make input_* functions public (def instead of defp) to
facilitate debugging.

 1.0.0

	Initial stable release

Cheatsheet

This document provides an at-a-glance overview on how to use "Advent of Code
Utils". In-depth information on each topic can be found in the relevant docs.

 The Basics

 Solution modules

A solution for a day is written in a solution module. These modules are
written using the AOC.aoc/3 macro.
import AOC

aoc <year>, <day> do
 def p1(input) do
 # part 1 solution goes here
 end

 def p2(input) do
 # part 2 solution goes here
 end

 def another_function do
 # arbitrary code goes here
 end

 # any code that is valid in an
 # elixir module is valid here
end
This generates a standard elixir module named Y<year>.D<day>.

 iex interaction

Inside iex, you can use the functions described in AOC.IEx to test your
solution:
Test solutions
	AOC.IEx.p1e/1
	AOC.IEx.p1i/1
	AOC.IEx.p2e/1
	AOC.IEx.p2i/1
	AOC.IEx.p1/2
	AOC.IEx.p2/2

Get module (to test helpers)
	AOC.IEx.mod/1

Get puzzle / example data
	AOC.IEx.input_path/1
	AOC.IEx.example_path/1
	AOC.IEx.input_string/1
	AOC.IEx.example_string/1
	AOC.IEx.list_examples/1

 Mix tasks

mix is used to fetch the input for a puzzle and to create boilerplate code.
Fetch input / example
	mix aoc.get

Generate code skeleton
	mix aoc.gen

Fetch + Generate
	mix aoc

 Handling Examples

When using mix aoc.get (or mix aoc), Advent of Code utils fetches all the
code blocks on the puzzle page and stores them as examples.
	Any code block on the puzzle page is treated as an example, so some false
positives may be present.
	Running mix aoc.get after solving part 1 will fetch any new examples from
the puzzle page if your session cookie is set.
	Example fetching can be disabled by passing --no-example to mix aoc or
mix aoc.get, or by setting fetch_example? to false.

 Interacting with examples in iex

iex> p1e()
Runs p1 of the current day with the first example input.
iex> p1e(n: 0)
Same as above, examples are numbered starting from 0
iex> p1e(n: 3)
Run p1 of the current day on the 4th example found.
iex> p2e(n: 3)
Run p2 of the current day on the 4th example found.
iex> list_examples()
Show all available examples

 Specifying time and date

 In iex

iex> p1i()
Runs p1 of the current day
with the input string of that day
iex> p1i(day: 8)
Runs p1 of day 8 of the current
year with the input string of that day
iex> p1i(day: 8, year: 1991)
Runs p1 of day 8 of 1991
with the input string of that day
iex> p1i(year: 1991)
Uses the current day of the month,
but in 1991
iex> p1("some input", day: 8)
Runs p1 of day 8 of the current
year with the provided input string
A day can be specified like this for all AOC.IEx functions.

 Specifying year or day in config.exs

Year or day may also be specified in the config/config.exs file:
import Config

config :advent_of_code_utils,
 day: 8,
 year: 1991
Setting the year is, for instance, useful when going back to finish previous
years.

 When using mix tasks

	mix aoc --day <day> --year <year>	Generates code + fetches input for the given year and day.

	mix aoc -d <day> -y <year>	Same as above, but shorter.

	mix aoc --day <day>	Generates code + fetches input for the current year with the given day.

	mix aoc --year <year>	Generates code + fetches input for the given year with the current day.

The same options can be passed to mix aoc.gen and mix aoc.get.

 Precedence

Mix tasks and the AOC.IEx helpers use the year and date from the following
sources, using the first that matches.
	Options passed as argument to a function or as a flag to a mix task.
	Year or day as specified in the application configuration (i.e. in
config/config.exs).
	The local year and month of day.

 Tests

Advent of Code utils offers optional support for generating and
writing (doc)tests.

 Test modules

AOC.aoc_test/4 can be used to generate a unit test module for a solution
module.
import AOC

aoc_test <year>, <day> do
 # test code goes here
end
This generates an elixir module named Y<year>.D<day>.AOCTest which uses
AOC.Case.
This code can be generated by mix aoc.gen.

 accessing (puzzle) input

Inside the aoc_test module or inside the doctests, you can access the puzzle
input and the example input using the following functions:
	input_string/0
	example_string/1
	input_path/0
	example_path/1

AOC.aoc_test/4 also import/2s the solution module, so you can access any
of its functions as well.

 doctests

AOC.aoc_test/4 automatically calls the doctests of the solution module.
This enables you to write your solution module as follows:
aoc <year>, <day> do
 @doc """
 iex> p1(example_string(0))
 # solution to part 1 here
 """
 def p1(input), do: ...
end
mix aoc.gen can automatically generate doctests skeletons for your solution
module.

 Running the tests

AOC.aoc_test/4 injects several module tags into the test case, which can be
used to make mix test only run the (doc)tests you want. See AOC.Case for
more infomation.
Run the test of a specific day
	mix test --only day:<day>

Run the test of a specific day if your repository spans multiple years
	mix test --only aoc:<year>-<day>
	mix test test/<year>/<day>_test.exs

Run all tests of a year
	mix test --only year:<year>

Run all tests
	mix test

 Configuration & Setup

We recommend going through the full Setup & Use
section of the readme.

 Available configuration options

	Option	Used by	Default
	day	AOC.IEx mix aoc.get mix aoc.gen	Current day of month
	year	AOC.IEx mix aoc.get mix aoc.gen	Current year
	time_zone	AOC.IEx mix aoc.get mix aoc.gen	:local
	session	mix aoc.get	
	fetch_example?	mix aoc.get	true
	auto_compile?	AOC.IEx	false
	time_calls?	AOC.IEx	false
	gen_tests?	mix aoc.gen	false
	gen_doctests?	mix aoc.gen	value of gen_tests?
	code_path	mix aoc.gen	"lib/:year/:day.ex"
	test_path	mix aoc.gen	"test/:year/:day_test.exs"
	input_path	AOC.IEx mix aoc.get	"input/:year_:day.txt"
	example_path	AOC.IEx mix aoc.get	"input/:year_:day_example_:n.txt"

 Other recommended tweaks

	Add import AOC.IEx to
the .iex.exs file.
This allows you to call AOC.IEx.p1i/1 and similar in iex without the need
to prefix it.
	Add config :iex, inspect: [charlists: :as_lists] to config/config.exs.
This prevents elixir from displaying lists of integers as strings.

AOC behaviour

Advent of Code solution module macro and helpers.
This module contains the aoc/3 macro, which should be used to write a solution module for a
given advent of code challenge. The intended use is to write your solution for day <day>, year
<year> as follows:
import AOC

aoc <year>, <day> do
 def p1(input) do
 # Part 1 solution goes here
 end

 def p2(input) do
 # Part 1 solution goes here
 end
end
Writing a solution module with the aoc/3 macro enables you to use the functions defined in the
AOC.IEx module to test your solutions with ease. For instance, you can use AOC.IEx.p1e/1 to
call p1 with the first example input of the current day and AOC.IEx.p1i/1 to call p1 with
the puzzle input of the current day. Similar functions are available for p2.
Note that the code skeleton shown above can be generated by running mix aoc.gen or mix aoc.

 Summary

 Callbacks

 AOC.Case - Advent of Code Utils v5.0.0

AOC.Case

ExUnit.CaseTemplate for writing advent of code test cases.
This template inserts module tags and helper functions into the unit test module. Concretely, it
inserts several module tags, which can be used to selectively test certain days using mix test. It also inserts several helpers which make it possible to access the example and puzzle
input within the tests.
The use statement expects a year and day option, which are used to generate the correct
module tags and helper functions.
Consider using AOC.aoc_test/4 instead of this case template.

 Module tags and filtering

This case adds the following module tags:
	year: the year of the puzzle
	day: the day of the puzzle
	aoc: the year and day of the puzzle, separated by a dash, e.g. "1991-8"

mix test allows you to filter tests based on tags, therefore, you can do the following:
	mix test --only year:1991: will run all tests associated with year 1991.
	mix test --only day:8: will run all tests associated with day 8.

Specifying multiple --only options combines the options, i.e., running
mix test --only day:8 --year:1991 will run all tests of year 1991 and all the tests of any
day 8. This is problematic if your solution repository spans multiple years. Therefore, we
include the aoc tag, which uniquely identifies a day:
	mix test --only aoc:1991-8: will run all the tests associated with day 8 of year 1991.

If your solution repository only contains modules for a single year, this behaves identical to
mix test --only day:8.

 Helpers

This template injects several helpers into the test module which can be used to access the
example and puzzle input. These helpers behave similar to those defined in AOC.IEx, but always
fetch the input or example associated with the solution module. The following helpers are
injected:
	example_string/1: Fetch the n-th example input with trailing newlines removed.
	input_string/0: Fetch the puzzle input, trailing newlines are removed.
	input_path/0: Get the path to the puzzle input.
	example_path/1: Get the path to the n-th example input.

 AOC.IEx - Advent of Code Utils v5.0.0

AOC.IEx

IEx helpers for advent of code.
This module contains various helpers that make it easy to call procedures in your solution
modules. It is intended to be used while testing solutions in iex, the elixir shell.
In order to avoid prefixing all calls with AOC.IEx, we recommend adding import AOC.IEx to
your .iex.exs file.

 Requirements and AOC.aoc/3

In order to find a module for a given day and year, this module expects the module to have the
name Y<year>.D<day>. This is always the case if the AOC.aoc/3 macro was used to build the
solution module (and thus the case if the template generated by mix aoc.gen or mix aoc is
used).
Furthermore, it is expected that the solutions for part 1 and part 2 are defined in non-private
functions named p1 and p2. These functions must accept one argument: the puzzle input,
represented as a string.

 Functions in this module

This module provides the p1e/1, p1i/1, p2e/1 and p2i/1 functions, which call your part
one or part two solution with an example (p1e/1, p2e/1) or with the puzzle input (p1i/1,
p2i/1) from within iex. You can also use p1/2 and p2/2 to call the p1 and p2
functions of your solution module directly.
mod/1 can be used to obtain the current solution module, which is useful if you wish to test
other functions in your solution module. Moreover, example_path/1, input_path/1,
example_string/1, and input_string/1, can be used to experiment with the puzzle input and
example input retrieved by mix aoc.get or mix aoc inside iex.

 Specifying an example

mix aoc.get fetches every code block on the puzzle input webpage and treats it as an example.
These examples are stored on disk and can be accessed through the use of p1e/1, p2e/1,
example_path/1 and example_string/1. By default, these functions use or return the first
code block found on the puzzle webpage. However, these functions accept an n: option, which
can be used to specify which example to use. list_examples/1 can be used to obtain an overview
of all the available examples.
Note that running mix aoc.get after finishing part 1 may retrieve additional examples.

 Specifying the puzzle date

The functions in this module all select a puzzle (or more specifically, its solution module,
input or example) based on the current time. For instance, the p1/2 function calls the p1
function of the solution module that corresponds to the current day. The current day (and year)
is determined by NaiveDateTime.local_now/0, or by DateTime.now/2 if a time zone was set, as
described in the README. If it is past midnight, or if you wish to
solve an older challenge, there are a few options at your disposal:
	Each function in this module accepts an optional keyword list through which the year and day
can be specified. For instance, if you wish to run part 1 of of 8 december 1991, you could
write the following code: p1(<input>, year: 1991, day: 8). If you omit the day or year, the
current day or year is used by default. p1(<input>, day: 8) would, for instance, call part 1
of day 8 of the current year.

	The year and day can be configured through the :advent_of_code_utils application
environment. For instance, you can set the year to 1991 and the day to 8 by placing the
following in your config/config.exs:
import Config

config :advent_of_code_utils,
 day: 8,
 year: 1991

Both of these options can be combined. You can, for instance, set the year in
config/config.exs and select the day when calling p1/2 or any other function in this module.
To summarise, the day or year is determined according to the following rules:
	If year or day is passed as part of the keyword list argument, it is always used.
	If :year or :day is present in the :advent_of_code_utils application environment, it is
used.
	The year or day returned by NaiveDateTime.local_now/0 or DateTime.now/2 is used.

 Automatic recompilation

It is often necessary to recompile the current mix project before running code. To avoid
repeatedly calling IEx.Helpers.recompile/1, the various p* functions in this module and
mod/1 will automatically recompile the current mix project (with IEx.Helpers.recompile/1)
when :auto_compile? is set to true in the :advent_of_code_utils application environment:
import Config

config :advent_of_code_utils, auto_compile?: true

 Elapsed time

Some developers are interested in the runtime of their solutions. When the time_calls? options
is set in the :advent_of_code_utils application environment, the runtime of a solution will be
shown when calling p1/2, p2/2, p1i/1, p1e/1, p2i/1 and p2e/1. By default, this
feature is disabled.
import Config

config :advent_of_code_utils, time_calls?: true
This feature can also be enabled or disabled by passing time: true or time: false as an
option to p1/2, p2/2, p1i/1, p1e/1, p2i/1 or p2e/1.

 Summary

 Functions

 mix aoc - Advent of Code Utils v5.0.0

mix aoc

Create a code skeleton and fetch input for the AOC challenge of a day / year.
This mix task runs mix aoc.gen followed by mix aoc.get. Afterwards, it prints the url of
today's challenge. Please refer to mix help aoc.gen and mix help aoc.get for more
information.

 mix aoc.gen

This task creates a code skeleton for the AOC challenge of a given day / year. The generated
code is written to lib/<year>/<day>.ex. Optionally, a unit test file is generated in
test/<year>/<day>_test.exs. The location where files are created can be customized.

 mix aoc.get

This task fetches the input and example inputs for a given day and year and stores it in
input/<year>_<day>.txt and input/<year>_<day>_example_<n>.txt. In order for this task to
work, your session cookie should be passed as a command line argument or set up in the
:advent_of_code_utils application environment.

 Configuration

 Application environment

The following application configuration parameters can modify the behaviour of this
task:
	day: Specify the day. Defaults to the current day.
	year: Specify the year. Defaults to the current year.
	time_zone: Specify the time-zone used to determine the local time. Defaults to the time zone
of your computer. Please refer to the README for additional
information.
	session: Advent of code sessions cookie. Needed to allow mix aoc.get to fetch your
personal puzzle input.
	input_path: Determines where mix aoc.get stores the input file. Defaults to
"input/:year_:day.txt"
	example_path: Determines where mix aoc.get stores the example inputs. Defaults to
"input/:year_:day_example_:n.txt"
	gen_tests?: Determines if mix aoc.gen creates test files. Defaults to false.
	gen_doctests?: Determines if mix aoc.gen creates doctests. Defaults to the value of
gen_tests?.
	code_path: Determines where mix aoc.gen stores the generated code file. Defaults to
"lib/:year/:day.ex".
	code_path: Determines where mix aoc.gen stores the generated test file. Defaults to
"test/:year/:day_test.exs"

 Command-line arguments

	-y or --year: Specify the year.
	-d or --day: Specify the day.
	-s or --session: Specify the session cookie.
	--example: Fetch example input (the default)
	--no-example: Do not fetch example input
	-t or --test: Generate tests.
	--no-test: Do not generate tests.
	--doctest or --no-doctest: Enable or disable the creation of doctests.

All of these options take precedence over their application environment counterparts.

 mix aoc.gen - Advent of Code Utils v5.0.0

mix aoc.gen

Create a code skeleton for the AOC challenge of a given day / year.
This mix task creates a code skeleton for the advent of code challenge of a specific day. The
day and year of the challenge can be passed as command-line arguments or be set in the
advent_of_code_utils application configuration. When neither of these are present, the current
date is used.

 (doc)tests

By default, this task only generates a solution module file. When gen_tests? is set to true
in the application configuration (i.e. in config/config.exs), or when --test is passed as an
option to this task, this task will also generate a unit test file. Moreover, it will also add
doctests to the solution module.
If you do not wish to generate doctests, you can set gen_doctests? to false in the
application configuration or pass the --no-doctest option to this task.

 Generating tests later on

This task will never overwrite existing files. Therefore, if you run mix aoc.gen --test after
a previous run of mix aoc.gen (without --test), this task will create a unit test file and
leave the existing file alone. This is useful if you wish to add tests to existing code.
Note that adding the --doctest flag when a solution module has already been generated will not
work, as this task will never overwrite existing files.

 File locations

By default, this task stores the generated code skeleton in lib/<year>/<day>.ex. If this file
already exists, an error is returned and no files are created. The destination path can be
modified by setting the value of :code_path in the advent_of_code_utils application
configuration. This value should be set to a string which may contain :year and :day. These
values will be replaced by the day and year for which a skeleton is generated.
For instance, the following configuration will store the generated code in
lib/aoc_<year>_day_<day>.ex:
config :advent_of_code_utils, :code_path, "lib/aoc_:year_day_:day.ex"
If tests are generated, they are stored in test/<year>/<day>_test.exs. This value can be
modified by setting test_path in the application configuration. Note that, in order for the
test to work with mix test, the test path must end in _test.exs.

 Configuration

 Application environment

The following application configuration parameters can modify the behaviour of this
task:
	day: Specify the day. Defaults to the current day.
	year: Specify the year. Defaults to the current year.
	time_zone: Specify the time-zone used to determine the local time. Defaults to the time zone
of your computer. Please refer to the README for additional
information.
	gen_tests?: Determines if test files are created. Defaults to false.
	gen_doctests?: Determines if doctests are generated. Defaults to the value of gen_tests?.
	code_path: Determines where the generated code file is stored. Defaults to
"lib/:year/:day.ex".
	code_path: Determines where the generated test file is stored. Defaults to
"test/:year/:day_test.exs"

 Command-line arguments

The options below take precedence over values defined in the application configuration.
	-d or --day: Specify the day.
	-y or --year: Specify the year.
	-t or --test: Generate tests.
	--no-test: Do not generate tests.
	--doctest or --no-doctest: Enable or disable the creation of doctests.

 Summary

 Functions

 mix aoc.get - Advent of Code Utils v5.0.0

mix aoc.get

Fetch the input and each example input of the AOC challenge for a given day / year.
This mix task fetches the input and each example input for the advent of code challenge of a
specific day. The day and year of the challenge can be passed as command-line arguments or be
set in the advent_of_code_utils application configuration. When neither is present, the
current date is used.
By default, this task stores the fetched input data in input/<year>_<day>.txt. The fetched
examples are stored in input/<year>_<day>_example_<n>.txt where n is a progressive
number, starting from 0, that distinguish each example. If a file already exists, the matching
input is not fetched. The destination paths can be modified by setting the value of
:input_path or :example_path in the advent_of_code_utils application configuration. These
values should be set to a string which may contain :year and :day (and :n for
:example_path). These values will be replaced by the day and year of which the input is
fetched (and the progress